2014年12月29日月曜日

Arduino AD9834 DDS VFO

 AD9850 DDS VFOの移植版。LCDはI2Cによる通信方式を採用。秋月電子のArduino用ユニバーサル基板で組んでみたが、使い勝手がとても良かった。また、プログラムは、7Mhz用としたので、AD9850の表示と全く同じ。(写真は割愛)
AD9834の出力は、バッファアンプ付とした。出力は、  7Mhz 3mW、17Mhz 1.8mW で、次段ドライブには十分。ArduinoのDC端子電圧は、8V位が適正値。(電圧が高い場合、Arduinoのレギュレター発熱大)












Program

Arduino AD9850 DDS VFOと基本的に同じだが、LCD表示のI2C化、AD9834固有部分の変更修正を行った。DDS通信部Fnc_ddsは、MSBFIRSTへの変更とdigitalWrite(SCLK,HIGH)の追加である。特に、SCLK HIGHが無いと全く通信しないので、要注意だ。また、機能はAD9850版と同一。

//////////////////////////////////////////////////////////////////////
//  AD9834 DDS VFO Premixed type program ver.1.0
//
//    Copyright(C)2014.JA2GQP.All rights reserved.
//
//      7.000MHz to 7.200MHz Limitted.
//      (Target frequency = IF frquency + frequency)
//                                                  2014/12/29
//                                                  JA2GQP
//--------------------------------------------------------------------
//  Function
//    1.Upper Heterodyne(Target Frequency = IF Frequency + Frequency)
//    2.RIT Operation(-50kHZ to 50kHZ)
//    3.STEP(100k,10k,1k,100,10)
//    4.Memory Operation is Push RIT
//      (Frequency and Step)
//    5.Protection Operation At The Time Of Transmission
//    6.Channel Memory.Main Channel(Ch0) + 3 Channel(Ch1,Ch2,Ch3)
//    7.Split Operation(7.00MHz to 7.20MHz Limited!)
//
//////////////////////////////////////////////////////////////////////

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <rotary.h>
#include <EEPROM.h>

//----------  LCD Pin Assign  ------------------

LiquidCrystal_I2C lcd(0x27,16,2);     // set the LCD address to 0x27 for
                                           // a 16 chars and 2 line display

//----------  Define Constant Value   ----------
                                               
const byte  ENC_A = 2;                     // Encorder A
const byte  ENC_B = 3;                     //          B
const byte  SDATA = 4;                    // AD9834 SDATA
const byte  SCLK = 5;                      //        SCLK
const byte  FSYNC = 6;                    //        FSYNC
const byte  SW_STEP = 7;                 // STEP Sw
const byte  SW_RIT = 8;                    // RIT Sw
const byte  SW_SPLIT = 9;                // SPLIT Sw
const byte  SW_CH1 = 10;                 // Channel 1
const byte  SW_CH2 = 11;                 //         2
const byte  SW_CH3 = 12;                 //         3
const byte  SW_TX = 13;                   // TX Sw

const long  IF_FRQ = 9996500L;             // IF Frequency
const long  LW_FRQ = 7000000L;            // Lower Limit
const long  HI_FRQ = 7200000L;             // Upper Limit
const long  DEF_FRQ = 7050000L;          // Init Frequency
const long  DEF_STP = 1000L;               // Init STEP
const long  LW_RIT = -50000L;              // RIT Lower Limit
const long  HI_RIT = 50000L;                //     Upper Limit
const long  LW_VFO = IF_FRQ + LW_FRQ;    // Vfo Lower Limit
const long  HI_VFO = IF_FRQ + HI_FRQ;       //     Upper Limit
const long  DEF_VFO = IF_FRQ + DEF_FRQ;   // Vfo Default Frequency

const unsigned long  DDS_CLK = 56000000L;  // AD9834 Clock 56Mhz
const unsigned long  TWO_E28 = 268435456L; // 2^28

//----------  EEPROM Memory Address   ----------

const byte  Frq_Eep0 = 0x00;               // Frequency Ch0
const byte  Frq_Eep1 = 0x04;               //           Ch1                                              
const byte  Frq_Eep2 = 0x08;               //           Ch2
const byte  Frq_Eep3 = 0x0c;               //           Ch3

const byte  Stp_Eep0 = 0x10;               // STEP Ch0
const byte  Stp_Eep1 = 0x14;               //      Ch1                                              
const byte  Stp_Eep2 = 0x18;               //      Ch2
const byte  Stp_Eep3 = 0x1c;               //      Ch3

//----------  Encorder Pin Assign(INT)  --------

Rotary r = Rotary(ENC_A,ENC_B);            // 2 = ENC_A,3 = ENC_B

//----------  Memory Assign  -------------------

long Vfo_Dat = 0;                            // VFO Data
long Dds_Dat = 0;                            // DDS Data
long Rit_Dat = 0;                            // RIT Data
long Rit_Datb = 0;                        // RIT Data Old
long Enc_Stp = 0;                         // STEP
long Lng_Wk1 = 0;                         // Long Work1
long Lng_Wk2 = 0;                         // Long Work2

char *Lcd_Dat = "           ";            // Lcd Display Buffer

byte Byt_Chn = 0;                         // Channel SW
byte Byt_Chnb = 0;                        // Channel SW Old
byte Flg_Rit = 0;                         // RIT Flag
byte Flg_Ritb = 0;                        // RIT Flag Old
byte Flg_Tx = 0;                          // TX Flag
byte Flg_Spl = 0;                         // SPLIT Flag

//----------  Initialization  Program  ---------------

void setup(){
  lcd.init();                            // initialize the lcd
  lcd.backlight();                       // LCD backlight on

  pinMode(SW_STEP,INPUT_PULLUP);
  pinMode(SW_RIT,INPUT_PULLUP);
  pinMode(SW_SPLIT,INPUT_PULLUP);
  pinMode(SW_TX,INPUT_PULLUP);
  pinMode(SW_CH1,INPUT_PULLUP);
  pinMode(SW_CH2,INPUT_PULLUP);
  pinMode(SW_CH3,INPUT_PULLUP);

  PCICR |= (1 << PCIE2);
  PCMSK2 |= (1 << PCINT18) | (1 << PCINT19);
  sei();                                     // INT Enable

  pinMode(FSYNC,OUTPUT);
  pinMode(SCLK,OUTPUT);
  pinMode(SDATA,OUTPUT);

  Flg_Tx = 0;
  Flg_Rit = 0;
  Flg_Spl = 0;
 
  lcd.clear();
  Fnc_Chsw();                                // Channel Sw Read
  Byt_Chnb = Byt_Chn;
  Fnc_Eep_Rd();                              // EEPROM Read
}

//----------  Main program  ---------------

void loop() {
  if(Flg_Tx == 0){                          // Tx off?
    if(digitalRead(SW_STEP) == LOW){        // STEP Sw On?
      Fnc_Stp();                            //     Yes,STEP proc.
    }
    if(digitalRead(SW_RIT) == LOW){         // RIT Sw On?
      Fnc_Rit();                            //     Yes,RIT proc.
    }
    if(digitalRead(SW_SPLIT) == LOW){       // SPLIT Sw On?
      Fnc_Spl();                            //     Yes,SPLIT proc.
    }
    Fnc_Chsw();                             // Channel Sw read
   
    if(Byt_Chnb != Byt_Chn){                // Channnel SW Chenge?
      if(Byt_Chnb == 0){                    // Channnel 0?    
        Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep0);     //   Yes,Vfo_Dat Save
        Fnc_Eep_Sav4(Enc_Stp,Stp_Eep0);     //       Enc_Step Save
        Flg_Ritb = Flg_Rit;
        Rit_Datb = Rit_Dat;
        Flg_Rit = 0;
        Flg_Spl = 0;
        Rit_Dat = 0;
      }
     
      if(Byt_Chnb != 0){                    // Other(Ch1-Ch3) Channnel?
        Flg_Rit = 0;
        Flg_Spl = 0;
        if((Byt_Chn == 0) && (Flg_Ritb == 1)){
          Flg_Rit = 1;
          Rit_Dat = Rit_Datb;
        }
      }
       
      Byt_Chnb = Byt_Chn;
      Fnc_Eep_Rd();
    }
  }
  if(digitalRead(SW_TX) == LOW){            // Tx On?
    Flg_Tx = 1;                             //    Yes,Flg_Tx Set
  }
  else{                                    
    Flg_Tx = 0;                            //     No,Flg_Tx Reset              
  }

  if(Flg_Rit == 1){                        // RIT?
    Dds_Dat = Vfo_Dat + Rit_Dat;           //    Yes,Dds_Dat Set
  }
  else{
    Dds_Dat = Vfo_Dat;                     //    No,Dds_Dat Set
  }

  if(Flg_Tx == 1){                         // Tx?
    if(Flg_Spl == 1){                      // SPLIT?
      Dds_Dat = Vfo_Dat + Rit_Dat;         //    Yes,Dds_Dat Set
    }
      else{
        Dds_Dat = Vfo_Dat;                 //    No,Dds_Dat Set
      }
  }
  Fnc_Dds(Dds_Dat);                        // AD9850 DDS Out
  Fnc_Lcd();                               // LCD Display
  delay(100);
}

//----------  Encorder procedure(INT)  ---------------

ISR(PCINT2_vect) {
  unsigned char result = r.process();

  if(Flg_Tx == 0){
    if(result) {  
      if(result == DIR_CW){
        Lng_Wk1 = Vfo_Dat + Enc_Stp;
        Lng_Wk2 = Rit_Dat + Enc_Stp;
      }
      else{
          Lng_Wk1 = Vfo_Dat - Enc_Stp;
          Lng_Wk2 = Rit_Dat - Enc_Stp;
      }      
      if((Flg_Rit == 1) || (Flg_Spl == 1)){
        Rit_Dat = Lng_Wk2;
      }
      else{
        Vfo_Dat = Lng_Wk1;
        Rit_Dat = 0;
      }
      Vfo_Dat = constrain(Vfo_Dat,LW_VFO,HI_VFO);

      if(Flg_Spl == 1){
        Rit_Dat = constrain(Rit_Dat,(LW_VFO - Vfo_Dat),(HI_VFO - Vfo_Dat));
      }
      else{
        Rit_Dat = constrain(Rit_Dat,LW_RIT,HI_RIT);
      }
    }
  }
}

//----------  Function DDS set  ---------------

void Fnc_Dds(double frquency){
  unsigned long wrk = frquency * TWO_E28 / DDS_CLK;
  unsigned int wrk1,wrk2,wrk3;
 
  wrk1 = 0x2000;
  wrk2 = wrk & 0x3fff;
  wrk2 = wrk2 | 0x4000;
  wrk3 = wrk >> 14;
  wrk3 = wrk3 & 0x3fff;
  wrk3 = wrk3 | 0x4000;

  digitalWrite(SCLK,HIGH);                       // Added 2014/12/29
  digitalWrite(FSYNC,LOW);

  shiftOut(SDATA,SCLK,MSBFIRST,(wrk1 >> 8));
  shiftOut(SDATA,SCLK,MSBFIRST,wrk1);

  shiftOut(SDATA,SCLK,MSBFIRST,(wrk2 >> 8));
  shiftOut(SDATA,SCLK,MSBFIRST,wrk2);

  shiftOut(SDATA,SCLK,MSBFIRST,(wrk3 >> 8));
  shiftOut(SDATA,SCLK,MSBFIRST,wrk3);

  digitalWrite(FSYNC,HIGH);
}

//----------  Function Encorder STEP  ---------

void Fnc_Stp(){
  if(Enc_Stp == 10){                      // Step = 10Hz ?
    Enc_Stp = 100000;                     //   Yes,100khz set
    }
    else{
      Enc_Stp = Enc_Stp / 10;             // Step down 1 digit
      }
  delay(250);
  Fnc_Step_Disp();
  Fnc_Lcd();
  while(digitalRead(SW_STEP) == LOW)
    ;
  delay(250);
}

//----------  Function STEP Display  ----------

void Fnc_Step_Disp(){
  lcd.setCursor(0,1);
  lcd.print("    ");                    // Clear step display
  lcd.setCursor(0,1);
  if(1 <= (Enc_Stp / 1000)){            // kiro?        
    lcd.print(Enc_Stp / 1000);          //   Yes,Convert kiro
    lcd.print("k");
    }
    else{
      lcd.print(Enc_Stp);
      }
}

//----------  Function String Dot Edit  --------
   
char *Fnc_Dot_Edit(char *str,long n){
  int  i = 0;                           // Write the number
  char *p = str;
  unsigned long  u = abs(n);

  do{
    *p++ = "0123456789"[u % 10];
    u = u / 10;
    i++;
    if((0 != u) && (0 == (i % 3)))
      *p++ = '.';
    }
  while( 0 != u );

  if ( n < 0 )
     *p++ = '-';
   *p = '\0';
   Fnc_Revr( str );
   return str;
}

//----------  Function String Reverse  ---------

void Fnc_Revr(char *str){
  int i,n;
  char c;

  n=strlen(str);
  for(i = 0;i < n / 2;i++){
    c=str[i];
    str[i]=str[n - i - 1];
    str[n - i - 1]=c;
  }
}

//----------  Function Save EEPROM 2byte  ---------

void Fnc_Eep_Sav2(unsigned int value,int address){
  address += 1;
  for(int i = 0;i < 2;i++){
    byte toSave = value & 0xFF;
    if(EEPROM.read(address) != toSave){
      EEPROM.write(address,toSave);
      }
    value = value >> 8;
    address--;
  }
}

//----------  Function Save EEPROM 4byte  ---------

void Fnc_Eep_Sav4(long value,int address){
  address += 3;
  for(int i = 0;i < 4;i++){
    byte toSave = value & 0xFF;
    if(EEPROM.read(address) != toSave){
      EEPROM.write(address,toSave);
      }
    value = value >> 8;
    address--;
  }
}

//----------  Function Load EEPROM 2byte  ---------

unsigned int  Fnc_Eep_Lod2(int address){
  unsigned int value = EEPROM.read(address);
  value = value << 8;
  return value | EEPROM.read(address + 1);
}

//----------  Function Load EEPROM 4byte  ---------

long Fnc_Eep_Lod4(int address){
  long value = 0;
  for(int i = 0;i < 4;i++){
    value = value | EEPROM.read(address);
    if( i < 3){
      value = value << 8;
      address++;
      }
  }
  return value;
}

//----------  Function LCD Display  ---------

void Fnc_Lcd(){
  if(Flg_Tx == 1){
    lcd.setCursor(0,0);
    lcd.print("T");
  }
  else{
    lcd.setCursor(0,0);
    lcd.print(Byt_Chn);
  }
 
  Fnc_Step_Disp();

  if(Flg_Rit == 1){
    lcd.setCursor(5,1);
    lcd.print("R:          ");
    Fnc_Dot_Edit(Lcd_Dat,Rit_Dat);
    lcd.setCursor(7,1);
    lcd.print(Lcd_Dat);
    if((Rit_Dat >= 1000) || (Rit_Dat <= -1000)){
     lcd.print("k");
    }
  }

  if(Flg_Spl == 1){
    lcd.setCursor(5,1);
    lcd.print("X:          ");
    Fnc_Dot_Edit(Lcd_Dat,Rit_Dat);
    lcd.setCursor(7,1);
    lcd.print(Lcd_Dat);
    if((Rit_Dat >= 1000) || (Rit_Dat <= -1000)){
      lcd.print("k");
    }
  }

  if((Flg_Rit == 0) && (Flg_Spl == 0)){
    Fnc_Dot_Edit(Lcd_Dat,Vfo_Dat - IF_FRQ);
    lcd.setCursor(1,0);
    lcd.print(":              ");
    lcd.setCursor(3,0);
    lcd.print(Lcd_Dat);
    lcd.print("MHz");

    lcd.setCursor(5,1);
    lcd.print("     JA2GQP");
  }
}
 

//----------  Function Rit  ---------

void Fnc_Rit(){
  if(Flg_Rit == 0){
    Rit_Dat = 0;
    Flg_Rit = 1;
    Flg_Spl = 0;
    switch(Byt_Chn){
      case 1:
        Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep1);
        Fnc_Eep_Sav4(Enc_Stp,Stp_Eep1);
        break;
      case 2:
        Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep2);
        Fnc_Eep_Sav4(Enc_Stp,Stp_Eep2);
        break;
      case 3:
        Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep3);
        Fnc_Eep_Sav4(Enc_Stp,Stp_Eep3);
        break;
      default:
        Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep0);
        Fnc_Eep_Sav4(Enc_Stp,Stp_Eep0);
        break;
    }
  }
  else{
    Flg_Rit = 0;
  }
  while(digitalRead(SW_RIT) == LOW)
    ;
  delay(250);
}
 
//----------  Function Channel SW Check  ---------

void Fnc_Chsw(){
  if(digitalRead(SW_CH1) == LOW){
    Byt_Chn = 1;
  }
  else if(digitalRead(SW_CH2) == LOW){
    Byt_Chn = 2;
  }
  else if(digitalRead(SW_CH3) == LOW){
    Byt_Chn = 3;
  }
  else{
    Byt_Chn = 0;
  }
}

//----------  Function EEPROM Read  ---------

void Fnc_Eep_Rd(){
  if(Fnc_Eep_Lod4(Frq_Eep0) <= LW_VFO){
    Vfo_Dat = DEF_VFO;
    Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep0);
    Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep1);
    Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep2);
    Fnc_Eep_Sav4(Vfo_Dat,Frq_Eep3);
  }
  else{
    switch(Byt_Chn){
      case 1:
        Vfo_Dat = Fnc_Eep_Lod4(Frq_Eep1);
        break;
      case 2:
        Vfo_Dat = Fnc_Eep_Lod4(Frq_Eep2);
        break;
      case 3:
        Vfo_Dat = Fnc_Eep_Lod4(Frq_Eep3);
        break;
      default:
        Vfo_Dat = Fnc_Eep_Lod4(Frq_Eep0);
        break;
    }
  }
  if(Vfo_Dat <= 0){
    Vfo_Dat = DEF_VFO;
  }
  if(Fnc_Eep_Lod4(Stp_Eep0) <= 0){
    Enc_Stp = DEF_STP;
    Fnc_Eep_Sav4(Enc_Stp,Stp_Eep0);
    Fnc_Eep_Sav4(Enc_Stp,Stp_Eep1);
    Fnc_Eep_Sav4(Enc_Stp,Stp_Eep2);
    Fnc_Eep_Sav4(Enc_Stp,Stp_Eep3);
  }
  else{
    switch(Byt_Chn){
      case 1:
        Enc_Stp = Fnc_Eep_Lod4(Stp_Eep1);
        break;
      case 2:
        Enc_Stp = Fnc_Eep_Lod4(Stp_Eep2);
        break;
      case 3:
        Enc_Stp = Fnc_Eep_Lod4(Stp_Eep3);
        break;
      default:
        Enc_Stp = Fnc_Eep_Lod4(Stp_Eep0);
        break;
    }
  }
  if(Enc_Stp <= 0){
    Enc_Stp = DEF_STP;
  }
}

//----------  Function Split  ---------

void Fnc_Spl(){
  if(Flg_Spl == 0){
    Flg_Spl = 1;
    Flg_Rit = 0;
    Rit_Dat = 0;
  }
  else{
    Flg_Spl = 0;
  }
  while(digitalRead(SW_SPLIT) == LOW)
    ;
  delay(250);
}




       

2014年12月7日日曜日

EMOTO 103LB Display

 EMOTOのローテータ表示部が壊れたため、Arduino UNOで表示部を製作した。モータコントロール部は、正常動作していたので、コントロール機能はなく、位置表示のみとした。LCDは、公開済のI2C制御方式とし、配線量を減らした。故障した103LBの機械式表示部は、全て取り外し、電源とコントロールスイッチのみ流用。
 コントローラ内部写真である。機械式表示器で使っていた、PCB、歯車、ポテンションメータなどを外し、Arduino UNOとPower PCBを組み込んだ。
   全体の回路図。I2Cを含め書いて有るので見通しが良いと思う。













Program

ローテータの位置情報(600Ωのポテンションメータ)をADCで読み、角度変換のみである。個体差が有る所は、AD値のRock to Rock(0~360°で1023~171)である。現物合わせ的な処理となっている。(やっつけ仕事)

//////////////////////////////////////////////////////////////////////
//  EMOTO 103LB control display program ver.1.0
//
//    Copyright(C)2014.JA2GQP.All rights reserved.
//
//                                                  2014/12/5
//                                                  JA2GQP
//////////////////////////////////////////////////////////////////////

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27,16,2);  // set the LCD address to 0x27 for
                                        // a 16 chars and 2 line display
int val=0;
int ang=0;
float wk1,wk2,wk3;

void setup()
{
  lcd.init();                          // initialize the lcd
  lcd.backlight();                    // LCD backlight on
  lcd.setCursor(5,1);
  lcd.print("JA2GQP");
}

void loop()
{
// analog read
  val=analogRead(0);               // Current position read
  delay(100);

// 0-360 degree convert
  wk1=val;
  wk1=1023.0-wk1;                 // AD max
  wk2=360.0/(1023.0-171.0);      // Per 1 degree resolution
  wk3=wk1*wk2;
  ang=wk3;

// angle display
  lcd.setCursor(3,0);
  lcd.print("    ");
  lcd.setCursor(3,0);
  lcd.print(ang);

// Orientation check
  switch(val){
      case 169:
      case 170:
      case 171:
      case 172:
      case 173:
        lcd.setCursor(0,0);
        lcd.print("N");
        break;
      case 276:
      case 277:
      case 278:
      case 279:
      case 280:
        lcd.setCursor(0,0);
        lcd.print("NW");
        break;
      case 382:
      case 383:
      case 384:
      case 385:
      case 386:
        lcd.setCursor(0,0);
        lcd.print("W");
        break;
      case 489:
      case 490:
      case 491:
      case 492:
      case 493:
        lcd.setCursor(0,0);
        lcd.print("SW");
        break;
      case 595:
      case 596:
      case 597:
      case 598:
      case 599:
        lcd.setCursor(0,0);
        lcd.print("S");
        break;
      case 702:
      case 703:
      case 704:
      case 705:
      case 706:
        lcd.setCursor(0,0);
        lcd.print("SE");
        break;
      case 808:
      case 809:
      case 810:
      case 811:
      case 812:
        lcd.setCursor(0,0);
        lcd.print("E");
        break;
      case 915:
      case 916:
      case 917:
      case 918:
      case 919:
        lcd.setCursor(0,0);
        lcd.print("NE");
        break;
      case 1023:
        lcd.setCursor(0,0);
        lcd.print("N");
        break;
      default:
        lcd.setCursor(0,0);
        lcd.print("   ");
  }
 
// Limit check
  switch(val){
      case 169:
      case 170:
      case 171:    
        lcd.setCursor(11,0);
        lcd.print("R-OVR");           // Right over
        break;
      case 1023:
        lcd.setCursor(11,0);
        lcd.print("L-OVR");           // Left over
        break;
      default:
        lcd.setCursor(11,0);
        lcd.print("     ");
  }

}